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EXECUTIVE SUMMARY 

New Zealand forests comprise 10.1 million hectares of forests. Due to the sheer scale of managing 
these forests, remote sensing is increasingly used as a source of information for decision-making. 
Information on tree growth, mortality, and health related to climate or pest activity can be monitored 
and quickly mapped. Currently, no remote sensing methods exist to quantify foliar browse by 
paropsine beetles on Eucalyptus. Currently, defoliation assessments are performed through visual 
methods by ground-based observers. Such methods, like the Crown Damage Index (CDI), are time-
consuming, particularly at larger spatial scales, and potentially suffer from observer bias. 
 
Paropsine damage does not induce a colour change in foliage as would occur with a leaf-sucking 
insect. Instead, paropsines reduce canopy density by eating parts of leaves, thus altering their shape 
and area. Hence, LiDAR could be a suitable tool for paropsine defoliation assessment. This study 
aimed to evaluate the potential for LiDAR as a quantitative assessment of paropsine defoliation of 
Eucalyptus crowns as a replacement for the CDI. 
 
Three LiDAR scanners (VUX-240, VUX-1LR and L1) were used to collect data from a Eucalyptus 
trial in the Canterbury region (43°11'47.2"S 172°39'06.1"E) in September 2021 and March 2022. To 
measure the defoliation prediction accuracy of LiDAR we simultaneously collected CDI data for 55 
tree crowns at the same date as the LiDAR data. A total of 57 LiDAR metrics were extracted for each 
of the 55 tree crowns. The best metrics model to predict CDI was statistically analysed with a Partial 
Least Squares Regression (PLSR).  
 
Results: 
The results demonstrated 18 LiDAR metrics of interest and showed that LiDAR scanners could 
predict CDI with ±19.1-23.6 % error from the actual CDI observed in the field, with VUX-240 having 
the smallest error prediction (Root Mean Square Error (RMSE)=9.5 CDI units in September 2021), 
followed by the L1 scanner (RMSE=10.5 CDI units in March 2022), and VUX-1LR having the highest 
error prediction (RMSE=11.8 CDI units in September 2021 and RMSE=11.6 CDI units in March 
2022). 
 
Key conclusions are: 

• All three scanners had comparable predictive abilities, meaning that all could possibly be 
used for paropsine defoliation assessment.  

• The actual error prediction shows promise as a healthy tree could be distinguished from a 
heavily defoliated tree. 

• More testing needs to be undertaken to increase the LiDAR defoliation prediction accuracy. 
These tests should occur in sites with a broader CDI range (e.g., the Marlborough region).  

• Future work needs to move away from the CDI and use a quantitative method of assessing 
crown defoliation that can be compared with the remotely sensed LiDAR data. This is 
important as the CDI is semi-quantitative and potentially subject to observer bias. 

• More testing needs to be undertaken to determine whether LiDAR can differentiate between 
paropsine beetle defoliation and trees where abiotic stresses have led to small leaves and/or 
sparse crowns 
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INTRODUCTION 

Remote sensing to assess insect defoliation on Eucalyptus 

In 2022, forests covered 38% of New Zealand's land, representing a total of 10.1 million hectares. 
This includes 1.7 million hectares (8%) of productive plantation forests (About New Zealand's forests, 
2022). Due to the sheer scale of managing these forests, remote sensing is increasingly used as a 
source of information for decision-making (Ye et al., 2021). Information on tree growth, mortality, and 
health related to climate or pest activity can be monitored and quickly mapped (Hall et al., 2006). 
Currently, there are no remote sensing methods to assess foliar browse by paropsine beetles on 
Eucalyptus; and most of these defoliation assessments are performed through ground-based visual 
assessment.  
 
Lin (2017) used the Crown Damage Index (CDI), a visual assessment that was developed by Stone 
et al. (2003), to assess eucalypt defoliation. The CDI visually estimates individual leaf and total crown 
defoliation. Lin (2017) went further and counted the abundance of paropsine beetle defoliators 
(Paropsisterna cloelia and Paropsis charybdis) as a measure of pest impact. Mann and Pawson 
(2022) continued using the CDI method to assess the defoliation of different eucalypt species and 
more in-depth studies of E. bosistoana and E. tricarpa families at the Dillon and Lissaman NZDFI 
trial sites in Marlborough. Such ground-based observational methods are time-consuming, 
particularly at larger spatial scales. Although the CDI method has been validated by the State Forests 
of NSW, Forestry Tasmania and the Queensland Forestry Institute (Stone et al, 2003), it still suffers 
from potential observer bias and is only semi-quantitative. LiDAR or visual imagery taken from above 
canopy offers a potential solution to these problems by providing a faster assessment alternative, 
especially for larger trees or difficult-to-access areas (Rhodes et al., 2022; Senf et al., 2017; Silva et 
al., 2013).  
 
A tree's canopy can change in various ways in response to different forest health issues. Change 
can manifest as a loss of foliage, as leaves are either eaten or abscised by the plant, which alters 
the canopy density (Béland et al., 2014). Alternatively, canopy density may not change, but a colour 
variation in response to pests or diseases may occur (Barnes et al., 2017). It is well known that 
plants' spectral wavelengths absorbed and reflected (including invisible wavelengths) change in 
response to stress (dos Santos et al., 2017). Chewing insects can affect tree light absorption and 
reflectance due to changes in leaf morphology and composition (Hall et al., 2006). Modifications in 
the canopy in response to herbivory can generally be visible from above the canopy. Thus, 
quantifying canopy defoliation from above may be possible if an appropriate sensing technique can 
detect changes in canopy density and/or colour. 
 
There are many options to remotely sense a forest canopy; these can be divided into passive and 
active sensors. Passive sensors detect reflections from existing electromagnetic sources, e.g., the 
sun, and include multispectral imaging and hyperspectral imaging. Multispectral imaging comprises 
all sensors with more than two spectral bands, and hyperspectral imaging regroups sensors with 
hundreds of bands. Active sensors emit electromagnetic signals, then intercept them after they have 
reflected off of target objects. This includes Radio Detection and Ranging (RADAR) and Light 
Detection and Ranging (LiDAR). Interestingly, passive sensors can use photogrammetric 
approaches to yield 3D point clouds, much like the output of LiDAR. Both types of sensors can be 
deployed by satellites, piloted aircraft (planes and helicopters), or unpiloted aerial vehicles (UAVs) 
(What is remote sensing? The definition guide, 2021). The spatial resolution of the imagery is 
determined in part, by the proximity of the sensor to the target; hence low flying UAV can capture 
data at the highest spatial resolution, but piloted aircraft and satellites can capture data from a larger 
spatial extent.  
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PASSIVE SENSORS 

Multispectral imagery 
RGB imagery 
Leidemer et al. (2022) used RGB imagery to define six categories of Polygraphus proximus (bark 
beetle) damage on tree forests (Abies mariesii). They compared the percentage of white pixels per 
tree to assess its health (1 is healthy, 6 is dead). The average precision was 62%, with category 1 
reaching a precision of 73% and category 6 a precision of 93% when compared to visual 
assessment. 
 
Near Infrared imagery added to the RGB imagery 
The broader spectral range of a multispectral sensor includes a NIR band in addition to the RGB 
band and is frequently used to quantify plant stress (Mcfadyen et al., 2014). Plant stress identification 
is valuable because it can be used to calculate vegetation indices, which are often highly correlated 
to leaf biomass and health (Silva et al., 2013). Vegetation indices, like the "Normalised Difference 
Vegetation Index" (NDVI), are widely used in arable and pastoral systems. For example, Catorci et 
al. (2021) used NDVI to measure climate-induced stress in pastoral systems. Similarly, Falkenstrom 
et al.(2002) assessed slight and moderate stress defoliation on pine (Pinus sylvestris) and spruce 
(Picea abies) trees with NDVI. Results were promising, with a correlation coefficient between 
defoliation and NDVI of r=-0.73 to -0.91. Variation in model performance was tree species dependent 
with defoliation predicted most accurately for pine trees. A study from Dash et al.(2018) showed that 
herbicide stress on Pinus radiata could be detected by satellite imagery and by using UAV mounted 
sensors it could distinguish at the tree level. Changes in vegetation through time were detected with 
structural metrics, mostly with NDVI, RENDVI and GNDVI, with the same indices decreasing or 
decreasing for the UAV and satellite imagery data. The datasets relationship gave a model strength 
between satellite and UAV structural metrics of R2=0.91 for RENDVI, R2=0.84 for GNDVI and 
R2=0.82 for NDVI. Goodbody et al. (2018) used RGB and NIR imagery photogrammetry to monitor 
changes in canopy health caused by Choristoneura fumiferana (spruce budworm) defoliation. They 
measured defoliation prediction by comparing ground-based defoliation assessment (here, called 
cumulative defoliation) with spectral (mean value of band, standard deviation of band, etc.) and 
structural (90th percentile of height, skewness, kurtosis, etc.) metrics. The spectral metrics model 
was most accurate, predicting cumulative defoliation with R2= 0.79, against R2=0.49 for the structural 
model. The model combining spectral and structural metrics gave and R2= 0.79. Cardil et al. (2017) 
used RGB and Lidar technology to assess the defoliation of pine trees by Thaumetopea pityocampa 
(pine processionary moth), achieving a classification accuracy of 79% (non-infested and infested). 
These results suggest that RGB imagery may be used to assess paropsine damage on Eucalyptus 
trees. Paropsine defoliation does not cause a specific colour change to the leaves, however the 
removal of foliage may create colour differences in the crown with a reduction of "green". 
 
Hyperspectral imagery 
Another passive sensor used to detect defoliation is hyperspectral technology. Fraser et al. (2005) 
investigated Lambdina fiscellaria (eastern hemlock looper) damage on coniferous forests with 
hyperspectral satellite imagery (VGT sensor). The results showed an accuracy of R2= 0.97 (samples 
divided into defoliated and non-defoliated trees) for forest areas larger than 5-10 km2. In this study, 
the forest was highly defoliated and homogenous. Despite this relatively simple environment, many 
false detections were observed. They concluded that improvements were needed to adapt the model 
to a more diverse and less defoliated forest. Nasi et al. (2015) used hyperspectral technology to 
assess Ips typographus L. (bark beetle) damage at the tree level. Single trees were detected with 
an accuracy of 74% and tree health (dead, infested, healthy) was sensed with a final accuracy of 
76%. Another study from Abdel-Rahman et al. (2014) assessed Sirex noctilio damage on pine trees 
in South Africa. The study used hyperspectral imagery to classifying the results in three infestation 
phases, depending on the color (green, red and grey). Results showed an accuracy of 74.5% with 
the Forest classification and 73.5% for the Support Vector Machines classifiers. Hyperspectral 
imagery does not seem to be the most suitable remote sensing methodology for our experiment as 
a) it is expensive, and b) most available sensors have low spatial resolution making it more suitable 
for large scale analysis rather than individual tree crown analysis. 
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ACTIVE SENSORS 

Radio Detection and Ranging (RADAR) 
Bae et al. (2022) quantified  Lymantria dispar (spongy moth) defoliation on mixed oak forests using 
satellite RADAR. A canopy development index was extracted from the RADAR data collected at the 
beginning and the end of the experiment. The RADAR effectiveness was verified by comparing the 
results with foliage estimates obtained using optical (sentinel-2), terrestrial laser scanning (TLS), 
also called terrestrial LiDAR, and pest counting. They demonstrated that RADAR data were 
correlated with the optical data (Spearman's p=0.79), TLS data (Spearman's p=0.84) and physical 
counts of spongy moths (R2=0.52). RADAR has also been used to detect Ips typographus (Eurasian 
spruce bark beetle) outbreaks (Hollaus & Vreugdenhil, 2019) and Neodiprion sertifer (European pine 
sawfly) on Pinus sylvestris (Scots pine) forests defoliation. Likewise, the effectiveness of RADAR in 
detecting European sawfly damage was assessed by comparing RADAR results with TLS data, a 
visual defoliation assessment method, and the tree structure (needles, stems and branches) 
(Kaasalainen et al., 2010). Results suggested that TLS and RADAR combined have the potential to 
detect canopy changes, with TLS being best at detecting changes in biomass.  
 
Light Detection and Ranging (LiDAR) 
LiDAR (sometimes referred to as Airborne Laser Scanning (ALS) (Roussel et al., 2020)) works by 
emitting pulsed laser waves that are reflected (a 'return') from objects in the environment. The time 
it takes each pulse to return to the laser is then used to calculate the distance between the laser the 
object. Hundreds of thousands of pulses are emitted per second with modern LiDAR and together, 
their returns form a dense point cloud (Béland et al., 2014). This point cloud can then be used to 
describe the characteristics of trees, including leaf area and canopy density, that are important for 
insect defoliation applications (Pearse et al., 2017). LiDAR systems can be described as either 
discrete returns or full waveform systems. A discrete system only captures part of the potential data 
cloud and is limited to a few tens of measurements. This system may include from one to five, 
sometimes more, returns from each pulse. The full waveform system considers the whole range of 
returns (could be more than hundreds) to register the light energy returned to the laser during a time 
period. The full waveform system is more complex to process, even though it can provide more 
information than the discrete system (Lim et al., 2003). Discrete return LiDAR remains the most 
convenient and widely-used LiDAR tool system in forestry for point cloud overview and several 
processing steps like the Digital Surface Model (DSM) and Canopy Height Model (CHM)(Lim et al., 
2003). 
 
LiDAR has been used extensively as a tool to quantify insect defoliation. Kruskamp et al. (2011) 
used LiDAR to detect the presence or absence of Adelges tsugae (hemlock woolly adelgid) in a 
Georgia National Forest. The study showed that hemlock tree health could be accurately categorize 
health in three categories (with 1 as healthy and 3 as unhealthy) with LiDAR data using LAI (R2=0.73) 
and fractional cover (R2=0.47) at cluster size (15-20 m). Meng et al. (2018) assessed LiDAR tools 
as defoliation predictors for Lymantria dispar L. (spongy moth) defoliation on mixed oak-pine forests. 
LiDAR metrics could detect variation in canopy structures with a R2=0.77 and a RMSE =15.37%. A 
more recent study from Lin et al. (2019) showed that defoliation could be assessed  by  both 
hyperspectral imagery (R2=0.67, RMSE=15.87%) and LiDAR (R2=0.69, RMSE=12.28%), with better 
results obtained by LiDAR. Moreover, a combination of both sensors most accurately (R2=0.83, 
RMSE=9.93%) assessed pine tree defoliation by Tomicus spp. (pine shoot beetle).  
 
The widespread adoption of LiDAR for forest characterisation in New Zealand has been hindered by 
various barriers (Morgenroth & Visser, 2013). However, that is changing and now LiDAR is 
commonly applied to various forestry applications (De Gouw et al., 2020). Lower cost and new 
technologies, including affordable drones, allow broader use of the LiDAR-based applications 
(Béland et al., 2014). Remote sensing methods (data collection and processing) have various 
advantages and limitations. Choosing the right one will depend on the area and what should be 
monitored. The spatial, spectral and temporal resolution may substantially impact the final result. 
Data classifications in remote sensing, such as Maximum Likelihood classification (MLC), random 
Forest classification (RF), the Support Vector Machines classifiers (SVM), or the Classification and 
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Regression Tree (CART) may also have significant impacts (Belgiu & Drăguţ, 2016). Fortunately, 
new remote-sensing technologies allow cost-effective, tree-level assessments (Gu et al., 2020).  

Remote sensing applied to the study 

Paropsine damage does not induce a colour change in foliage like a leaf-sucking insect. Instead, 
paropsines reduce canopy density by eating parts of leaves, thus altering their shape and area. 
Hence, LiDAR could be a suitable tool for paropsine defoliation assessment. This study aimed to 
evaluate the potential of LiDAR as a quantitative method to assess paropsine defoliation of 
Eucalyptus crowns as a replacement for the subjective, time-consuming, Crown Damage Index. A 
well-established method to derive forest attributes from LiDAR is the area-based approach (ABA), 
where the study area is divided into a grid-cell structure (Roussel et al., 2020). This method depends 
on the structural metrics, which are then used to build the regression model. This technique allowed 
the model to be perfectly calibrated to the area, however each area surveyed requires model 
calibration prior to surveys (Coomes et al., 2017). This method may be suitable to assess defoliation 
per area without being tree specific or with a homogeneous forest. An alternative approach is based 
on individual tree segmentation (ITS) (Roussel et al., 2020). The ITS method is used to obtain tree 
top localisations and delineates tree crowns. LiDAR metrics (i.e., a statistical or quantitative 
description of the point cloud) are calculated for each tree crown or cell for the ITS and ABA 
scenarios, respectively (Roussel et al., 2020). This ITS method is more adapted to heterogenous 
forests as it could detect defoliation at tree level. Although ITS is more straightforward in obtaining 
information at the tree level, its application may be limited by a lack of point cloud density, inaccurate 
spatial location of trees and under detection of trees under the upper canopy (Coomes et al., 2017; 
Roussel et al., 2020). In this study, paropsine defoliation needed to be assessed at the tree level, 
and not per cell. Thus, the ITS method is most suited to this application. Many potentially relevant 
LiDAR metrics can be used to quantify attributes, such  as tree height (Griffin et al., 2008; Roussel 
et al., 2020; St Peter et al., 2021), canopy cover (Griffin et al., 2008; Roussel et al., 2020; St Peter 
et al., 2021), biomass (Roussel et al., 2020), basal area (Roussel et al., 2020; St Peter et al., 2021) 
and leaf area index (LAI) (Griffin et al., 2008; Pearse et al., 2017).  
 

The main metrics used to assess defoliation on trees are the 70th bincentile height, the intensity 
skewness, the intensity kurtosis (Meng et al., 2018), the 90th and 95th and 99th height percentile, the 
maximum height and skewness of height distribution (Goodbody et al., 2018; Vescovo et al., 2016). 
Because insect defoliation measurement with LiDAR is comparatively poorly understood, other 
metrics generally used in forestry may be significant. These include; kurtosis of height distribution, 
the mean height, the return fractions (Martins-Neto et al., 2021) (Table 1), the canopy cover, and the 
canopy density (Pearse et al., 2017). Nevertheless, single tree crown segmentation, delineation and 
the metrics related to tree defoliation remain a technological challenge (Gu et al., 2020) that foresters 
have only started to investigate. This project is the first step in evaluating LiDAR suitability to assess 
paropsine damage on Eucalyptus trees. If successful, such a method would be faster, and more 
consistent than ground-based visual assessments using the CDI, especially where a large number 
of trees need to be measured or terrain is challenging/inaccessible. 
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METHODS 

Site and Eucalyptus trees 

The Eucalyptus study site was located in Sefton, Canterbury region (43°11'47.2"S 172°39'06.1"E). 
Two Eucalyptus trials at this site were assessed with LiDAR. The first trial comprises trees from six 
species planted in 2011. This included E. bosistoana, E. camaldulensis, E. cladocalyx, E. globoidea, 
E. tricarpa and E. quadrangulata from the Symphyomyrtus subgenus, and E. globoidea from the 
Eucalyptus subgenus. The second trial comprised trees from different E. bosistoana families planted 
in 2010. 

LiDAR data collect in the field 

Data were collected twice to sample trees before and after the main paropsine activity period. The 
first sample was taken in September 2021, just before paropsines became active, and the second 
sample in March 2022. This permitted a comparison of LiDAR data collected for trees with little 
damage and trees subjected to greater levels of defoliation. In the middle of September, the data 
were collected with two different laser scanners to assess what data density was best to assess 
paropsine defoliation. The high-density scan was accomplished with a VUX-240 laser scanner (228 
points per square meter) attached to a Europcoter EC120 Colibri helicopter. The low-density scan 
was from a VUX-1LR (20 points per square meter) attached to a Guimbal Cabri G2 helicopter. Both 
data sets were collected between the 13th and the 17th of September 2021. The second collection 
was done with the same VUX-1LR on 18th March, however the VUX-240 was unavailable as it was 
based in Antarctica at that time. Instead, a Livox LiDAR module (L1) attached to a UAV (DJI Matrice 
300 RTK) was used that achieved point densities of 1509 points per square meter for the species 
trial and 1815 points per square meter for the E. bosistoana families trial on 1st March 2022. 
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Choosing the metrics 

A total of 57 metrics (Table 1) were derived for each of the four point clouds (VUX-240, VUX-1LR 
September 2021 and March 2022, and L1). 
 
Table 1: LiDAR metrics extracted from the segmented point cloud before sorting (Martins-Neto et al., 2021). Total of 57 
metrics used to analyse the possible prediction of CDI. 

Metrics 
extracted Description 

itot sum of intensity for each return 

imax maximum intensity 

imean mean intensity 

isd standard deviation intensity 

iskew skewness of intensity distribution 

ikurt kurtosis of intensity distribution 

ipcumzq xth percentage of intensity returned below the xth (10, 30, 50, 70, 90) (bicentile) 

zmax maximum height 

zwimean mean elevation weighted by intensity 

zimean mean products of z by intensity 

zmean mean height 

zsd standard deviation of height distribution 

zskew skewness of height distribution 

zkurt kurtosis of height distribution 

zsqmean quadratic mean 

zentropy entropy of height distribution 

pzabovemean percentage of return above zmean 

pzabove2 percentage of return above z 2 meter 

pxth x returns by pulses (1, 2, 3, 4, 5) 

zq xth 
Xth percentile of height distribution (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 

60, 65, 70, 75, 80, 85, 90, 95) 

zpcum xth cumulative percentage of return in the xth layer (1-9) with f(z) 

LiDAR workflow 

The software commonly used for LiDAR data processing are LAStools, Whitebox GAT, FUSION, 
Laser-chicken, RLidar Package, lidR (St Peter et al., 2021). LAStools (Isenburg, 2012), R (lidR 
package) (Roussel et al., 2020) and ArcGIS were used to process the LiDAR data for this study. The 
raw LiDAR data were processed with DJI Tera software to obtain a LAS file. The LAS file was then 
further processed on Lastools. The LAStools commands lasnoise, lasground, lasheight, and 
lasclassify were used as a first step to clean the LiDAR point cloud. The noise was removed, the 
point cloud was classified (excluding points above 25 meters, classifying points below 0.2 meter as 
ground, points between 0.21 and 1 meter as low vegetation, and points from 1.1 to 18 meters as 
high vegetation) and normalized. R (RStudio interface, lidR package) was used to extract the Digital 
Surface Model (DSM) and Canopy Height Model (CHM) from the LASfile (Roussel et al., 2020). The 
DSM captures the shape of the earth's surface, including all natural and human structures (Marwaha 
& Duffy, 2021). The CHM is a high-resolution raster layer that can map structure elevations as a 
continuous surface (Canopy Height Model (CHM), 2021). The CHM was created with a resolution of 
0.5 m and a radius circle of 0.15 m. Finally, the CHM was visualised in ArcGIS and the crowns of all 
55 trees with GPS coordinate were manually delineated. This manual delineation allowed a more 
precise individual tree crown for an optimal comparison CDI/metric predictors. This manual crown 
delineation was then uploaded in R and used to clip the LAS file to obtain one point cloud per tree. 
Then, 57 different metrics were extracted within each tree polygon (Table 1). 
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Crown damage Index (CDI) data 

Crown defoliation was estimated using the CDI method. The CDI method is a visual defoliation 
estimate of the entire tree. A derivative of the CDI is the CDI shoot assessment that evaluates three 
shoots that are observed in detail as a substitute for a full tree crown assessment. This sampling 
technique is more practical with taller trees where a pole pruner allows sampling of upper crown 
shoots where paropsine beetle damage occurs. The CDI score is calculated as the 
(Incidence*Severity)/100. The incidence is the number of damaged leaves per shoot scored as an 
average from three shoots. The severity is the average level of damage per leaf, again averaged 
across three shoots (Christine Stone et al., 2003). This defoliation level measurement is the most 
common method used to assess Eucalyptus defoliation in Australia (Christine Stone et al., 2003; C 
Stone et al., 2003). Trials were assessed on 15th September to allow for comparison with the LiDAR 
data; 30 trees from the species trial (five per species) and 25 trees from the E. bosistoana trial were 
assessed. The coordinates of the 55 trees were recorded with a GPS (Geo7x handheld, Trimble 
Inc., New Zealand) so that trees could be collocated with trees delineated from the canopy height 
model. A second CDI measurement of the same 55 trees was performed at the end of the summer 
season (9th March 2022) to correlate ground measurements of CDI with the LiDAR metrics collected 
during the same period.  

 
 
Image 1: Example of severity index for paropsine damage, Stone et al., 2003. 

Statistical analysis 

R (using R-studio interface) and Microsoft Excel were used for statistical analysis and data 
collection, respectively. We had a total of 57 LiDAR metrics for each of the 55 trees. A simple 
Pearson's correlation (rstatix package) was used to test the correlation between CDI and the 
different metrics (Table 1). Then, a second Pearson's correlation test using the corrplot package 
was used to test for multicollinearity between the 57 predictors. Due to possible 
multicollinearities and a high number of predictors, a Partial Least Squares Regression (PLSR), 
was used. A PLSR is similar to a Principal Components Analysis (PCA) and is commonly used 
in situations with small sample sizes and many possibly correlated predictor variables (Wehrens 
& Mevik, 2007). A multivariate PLSR approach is advantageous as it identifies multiple LiDAR 
metrics that, in combination, have better predictive power than a model based on a single LiDAR 
metric. 
 
A PLSR was applied (package pls) to determine the optimal number of LiDAR metrics that best 
model the CDI. This method was used by Goodbody and al. (2018) to assess metrics that predict 
spruce budworm damage on trees. Best models were compared using the Root Mean Square 
Error of Prediction (RMSEP). The PLSR used a leave-one-out cross-validation (LOO) and 12 
components. The 12 components were based on the convention that the maximum optimal 
number of predictors equals the number of samples/5. Thus, with 57 LiDAR metrics, our PLRS 
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model should have a maximum of 11 to 12 predictors. The effect of a linear transformation of 
the CDI variable was assessed on model performance. A prediction model fitting the PLSR model 
with the optimal number of predictors was evaluated using mean error (ME), mean absolute error 
(MAE), and root mean squared error (RMSE) tests. Finally, regression coefficients were extracted 
to quantify the percent variance explained by each metric. Tests were done separately for each 
collection of LiDAR data. The analysis with the L1 LiDAR was completed with only 43 trees rather 
than 55 due to a GPS error preventing the relocation of 12 trees in the dataset. The L1 PLSR analysis 
used only nine components in the LOO due to the reduced sample size. 
 
When comparing the CDI with the LiDAR point clouds, the CDI was used as a percentage of 
defoliation damage. For modelling purposes, the response variable CDI needs to be 
transformed with a logistic regression (logit model) to facilitate normality and homoscedasticity 
of the residuals (Gasso, 2019). 

RESULTS 

VUX-240 LiDAR 

Multicollinearity LiDAR metrics 

A Pearson's correlation test was calculated between the different metrics for the VUX-240 to test 
multicollinearity. It showed that multicollinearities existed (Figure 1). In total, 1,485 metric correlations 
were tested for multicollinearity, from which 95 metrics correlations had a value above 0.95 (Table 
1a appendices). This result demonstrates that metrics must be removed by performing a dimension 
reduction technique (e.g., PLSR) to avoid biases. 
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Figure 1: Matrix correlation of the 57 different metrics for the VUX-240 LiDAR scanner in September 2021. Many metrics 
were highly correlated (model with multicollinearity), with 95 metric correlations above 0.95. 

 CDI modelling with Partial Least Squares Linear Regression (PLSR) 

The RMSEP extracted from the PLSR for the VUX-240 data (September 2021) demonstrated a 
model containing nine metrics (CV=1.093) performed best for predicting CDI (Figure 2). The 
predicted model run with nine metrics was linear (Figure 2), with a ME of 1.581, MAE of 7.118, and 
RMSE of 9.554 (Table 3). The RMSE*2 can be interpreted as the standard deviation of the predicted 
residual, meaning that 95% of the CDI predictions are expected to be within ± 19.1 of the true 
observed CDI for the VUX-240. The predicted model was linear, and the correlation of the measured 
CDI with the predicted CDI from the best model was r=0.64. The nine metrics used for the model 
could integrate different combinations of component metrics, as illustrated in Table 2. 
 
The model with the logit transformation induced a slight mean error (ME of 1.58). Examining the 
predictive ability of LiDAR metrics without the logistic transformation (logit) automatically removed 
the mean error from our estimate. Without the logit, the best PLSR model had five LiDAR metrics. 
The predicted model with five metrics had a mean error of zero, MAE of 8.066, and an RMSE of 
9.376 (Table 3). The correlation between the CDI and the predicted model with five metrics was 
0.55. This correlation was weaker than in the model with the logit transformation.  
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Figure 2: A) RMSEP extracted from the PLSR model with a linear transformation for the VUX-240 scanner in September 
2021. Nine (CV=1.093) metrics were the best model to predict CDI. The black line represents the ordinary cross-validation 
estimate (CV). The red dashed line represents the bias-corrected CV estimate (adjCV). AdjCV varies depending on the 
validation method used. When a "Leave on out" method (LOO) is used, there is no difference between CV and adjCV. B) 
Linear regression of the predicted values against the observed values for the VUX-240 scanner. 

Table 2: Weight of each variable in each linear combination with the predicting model with a linear transformation (nine 
metrics) for the VUX-240 scanner. The itot metrics will be the first metrics to use, followed by zimean. The third one could 

be imax, imean or zimean, etc. The metrics with no observed weight were removed from the table. 

             Comp1   Comp2   Comp3   Comp4   Comp5   Comp6   Comp7   Comp8   Comp9 

itot        -1.000                                                                                 

imax                        0.858   -0.793   0.173                                                     

imean                       0.449    0.827  -0.463                                                     

isd                                          0.870                                                     

pzabovezmean                                        -0.165    0.171   0.177            

pzabove2                                            -0.147   -0.241   0.240  -0.154      

zpcum2                                                               -0.117                        

zpcum3                                               0.214    0.204  -0.281   0.224    

zpcum4                                               0.385    0.191  -0.372   0.196    

zpcum5                                               0.543    0.112  -0.327   0.195            

zpcum6                                               0.545   -0.322  -0.162   0.163  

zpcum7                                               0.461   -0.766                             

zpcum8                                               0.481   -0.689   0.544           

zpcum9                                               0.234   -0.137   0.586            

p1th                                                 0.341            0.323  -1.052    

p2th                                                                 -0.478   0.123   

p3th                                                                 -0.138            

zimean            -1.098   0.402                                                                   

 

  

A) B) 
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Table 3: Mean Error (ME), MAE, RMSE, CDI and predicted CDI correlation, best number of metrics chosen and CV value 
(from PLSR model) for each LiDAR data clouds depending on the scanner type. Three scanners: VUX-240, VUX-1LR and 
Matrice 300. Data collected between the 13th and the 17th of September 2021 for VUX-240 and VUX-1LR. Data was 
collected on 1st March for Matrice300 and 18th March for VUX-1LR. 55 trees were sampled for VUX-240 and VUX-1LR. 
43 trees were sampled for M300. 

  Date Scanner ME MAE RMSE Corr. CDI/predict No metrics CV 2*RMSE 

CDI % (Logit) 

Sept. 2021 VUX-240 1.581 7.118 9.554 0.638 9 1.095 19.109 

Sept. 2021 VUX-1LR 3.146 8.502 11.810 0.310 4 1.165 23.620 

March 2022 L1 2.911 8.024 10.515 0.460 2 1.079 21.030 

  March 2022 VUX-1LR 3.651 9.168 11.624 0.473 4 1.369 23.248 

CDI (non-transformed) 

Sept. 2021 VUX-240 0.000 8.066 9.376 0.556 5 10.480 18.752 

Sept. 2021 VUX-1LR 0.000 7.845 10.191 0.428 4 11.650 20.382 

March 2022 L1 0.000 7.869 10.041 0.461 2 11.090 20.082 

March 2022 VUX-1LR 0.000 8.622 10.364 0.514 4 11.810 20.728 

 

VUX-1LR LiDAR 

Multicollinearity LiDAR metrics 

September 2022 
A Pearson's correlation test was calculated between the different metrics for the VUX-1LR to test 
multicollinearity. It showed that multicollinearities existed (Figure 1a appendices). Due to a lack of 
point density or missing data, metrics like zq5 to zq50, p4t and p5th were returning to zero for all 
samples (see "?" in figure 1a appendices). Zq55 to 85, and p3th had many samples returning to 
zero. Results for these metrics should be handled with care. In total, 903 metric correlations were 
tested, from which 33 metrics correlations had a value above 0.95 (Table 2a). This result 
demonstrates many metrics need to be removed by performing a dimension reduction technique to 
avoid biases. 
 
March 2022 
A Pearson's correlation test was calculated between the different metrics for the VUX-1LR to test 
multicollinearity. It showed that multicollinearities existed (Figure 2a appendices). Due to a lack of 
point density or missing data, metrics like zq5 to zq50, p4t and p5th returned zero values for all 
samples (labelled as "?" in figure 2a appendices). Zq55 to 85, and p3th had many samples returning 
to zero. Results for these metrics should be handled with care. In total, 903 metrics were tested, 
from which 33 metric correlations had a value above 0.95 (Table 3a). This result demonstrates many 
metrics need to be removed by performing a dimension reduction technique to avoid biases. 

CDI modelling with Partial Least Squares Linear Regression (PLSR) 

September 2022 
The PLSR results obtained with the VUX-1LR scanner from September 2021 gave a ME of 3.146, a 
MAE of 8.502 and a RMSE of 11.810 (Table 3) for four metrics as the best model (Figure 3), meaning 
that this scanner could predict the CDI with ± 23.6 of the observed value. The correlation between 
the CDI and the predicted CDI was 0.31 (Table 3). The four best metrics to use for the CDI prediction 
were itot, zimean, a combination of imax, imean, isd and zimean and a combination of imax, imean 
and isd (Table 4). 
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The model with the logit transformation induced a mean error of 3.15. Examining the predictive ability 
of LiDAR metrics without the logistic transformation (logit) automatically removed the mean error to 
our estimate. Without the logit, the best PLSR model had four LiDAR metrics. The predicted model 
with four metrics had a mean error of zero, MAE of 7.845, and an RMSE of 10.191 (Table 3). The 
correlation between the CDI and the predicted model with five metrics was 0.43. This correlation was  
stronger than in the model with the logit transformation.  

Figure 3: A) RMSEP extracted from the PLSR model with a linear transformation for the VUX-1LR scanner from September 
2021. Four metrics (CV=1.165) were the best model to predict CDI. B) Linear regression of the predicted values against 
the observed one for the VUX-1LR scanner from September 2021. The regression is linear. 

Table 4: Weight of each variable in each linear combination with the predicting model with a linear transformation (four 
metrics) for the VUX-1LR scanner from September 2021. The best metrics to use were itot, imax, imean, isd and zimean). 
The metrics with no observed weight were removed from the table. 

             Comp 1   Comp 2   Comp 3   Comp 4   
itot        -1.000                                                                                 

imax                          -0.352   -0.630                                                   

imean                          0.857   -0.791                                                            

isd                           -0.471   -0.301                                            

zimean               -1.004    
0.136                                                                   

 
March 2022 
The transformed PLSR results obtained with the VUX-1LR scanner from March 2022 demonstrated 
that four metrics were still the best model for this scanner (Figure 4). It produced a ME of 3.651, a 
MAE of 9.168 and a RMSE of 11.624 (Table 3), meaning that this scanner could predict the CDI with 
± 23.2 of the observed value. The correlation between the CDI and the predicted CDI was 0.473. 
The four best metrics to use for the CDI prediction were itot for the first metric, zimean for the second 
one, a combination of imax, imean, isd and zimean for the third metric and a combination of imax, 
imean and isd for the fourth metric (Table 5).  
 
The model with the logit transformation induced a mean error of 3.65. Examining the predictive ability 
of LiDAR metrics without the logistic transformation (logit) automatically removed the mean error to 
our estimate. Without the logit, the best PLSR model had four LiDAR metrics. The predicted model 
with four metrics had a mean error of zero, MAE of 8.622, and an RMSE of 10.364 (Table 3). The 
correlation between the CDI and the predicted model with five metrics was 0.51. This correlation was 
stronger than in the model with the logit transformation. Livox L1 LiDAR module 

A) B) 
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Figure 4: A) RMSEP extracted from the PLSR model with a linear transformation for the VUX-1LR scanner from March 
2022. Four metrics (CV=1.369) were still the best model to predict CDI. B) Linear regression of the predicted values 

against the observed one for the VUX-1LR scanner from March 2022. The regression is linear. 

Table 5: Weight of each variable in each linear combination with the predicting model with a linear transformation (four 
metrics) for the VUX-1LR scanner from March 2022. The best metrics to use were itot, imax, imean, isd and zimean). The 

metrics with no observed weight were removed from the table. 

             Comp 1   Comp 2   Comp 3   Comp 4  

itot         1.000                                                                                 

imax                          -0.166   -0.740   

imean                          0.920   -0.616                                                            

isd                           -0.378   -0.433 -  

zimean               -1.023    0.252                                                                   

 

L1 LiDAR 

Multicollinearity LiDAR metrics 

A Pearson's correlation test was calculated between the different metrics for the L1 scanner to test 
multicollinearity. It showed that multicollinearities existed (Figure 3a). Due to missing tree data (use 
of 43 trees rather than 55), metrics like zq5 to zq20, p3th to p5th had many samples returning to 
zero. Results for these metrics should be handled with care. In total, 1378 metric correlations were 
tested, from which 54 metrics correlations had a value above 0.95 (Table 4a). This result 
demonstrates many metrics need to be removed by performing a dimension reduction technique to 
avoid biases. 

CDI modelling with Partial Least Squares Linear Regression (PLSR) 

The transformed PLSR results obtained with the Livox L1 scanner from March 2022 demonstrated 
that the best model to predict CDI should include only two metrics (Figure 5). The ME was 2.91, the 
MAE 8.024 and the RMSE 10.515 (Table 3). With this scanner, the model could predict CDI with 
±21% of the observed CDI. The correlation between the CDI and the predicted CDI was 0.46. The 
two best components to predict the CDI for this scanner are itot for the first component and a 
combination of imax, ipcumzq10, 30, 50 and 70, zkurt, pzabovemean, pzabove2, p1th, p2th and 
zimean for the second component (Table 6). 
 

B) A) 
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The model with the logit transformation induced a mean error of 2.91. Examining the predictive ability 
of LiDAR metrics without the logistic transformation (logit) automatically removed the mean error to 
our estimate. Without the logit, the best PLSR model had four LiDAR metrics. The predicted model 
with four metrics had a mean error of zero, MAE of 7.869, and an RMSE of 10.041 (Table 6). The 
correlation between the CDI and the predicted model with five metrics was 0.46. This correlation was 
similar to the model with the logit transformation.  

Figure 5: A) RMSEP extracted from the PLSR model with a linear transformation for the L1 scanner from March 2022. 
Two metrics (CV=1.079) were the best model to predict CDI.B) Linear regression of the predicted values against the 
observed one for the L1 scanner from March 2022. The regression is linear. 

Table 6: Weight of each variable in each linear combination with the predicting model with a linear transformation (two 
metrics) for the L1 scanner from March 2022. The best metrics to use were itot for the first metric and a combination of 
imax, ipcumzq10, ipcumzq30, ipcumzq50, ipcumzq70, zkurt, pzabovezmean, pzabove2, p1th, p2th and zimean for the 

second metric). The metrics with no observed weight were removed from the table. 

             Comp 1   Comp 2  

itot         1.000         

imax                  0.128   

ipcumzq10            -0.234   

ipcumzq30            -0.219   

ipcumzq50            -0.163   

ipcumzq70            -0.104   

zkurt                -0.425  

pzabovezmean          0.139       

pzabove2              0.173      

p1th                  0.152   

p2th                 -0.117 

zimean                0.785   

 

LiDAR scanners comparison 

Differences in CDI prediction for the VUX-1LR between September 2021 (±23.62%) and March 2022 
(±23.25%) showed that the accuracy prediction stayed the same between seasons for this scanner. 
The correlation between CDI and predicted CDI increased through the season (0.473 in March 2022 
against 0.31 in September 2021). There were multicollinearities with the metrics within the three 
LiDAR data scanners, with both VUX-240 and VUX-1LR from September 2021 having 95 metric 
correlations above 0.95. VUX-1LR and L1 from March 2022 had only 33 and 54 metrics correlation 
over 0.95, respectively. 
 
The mean average difference between the observed actual CDI value and the predicted CDI value 
obtained from the LiDAR data was the lowest for the VUX-240 scanner (19.1%). Then, the L1 had a 

A) B) 
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mean average difference of 21%, and VUX-1LR had an average mean difference of 23.6% in 
September 2021 and 23.3% in March 2022. As these results refer to CDI as a percentage, a 
difference of approximately 5% between the scanners is minimal, especially between the VUX-240 
and L1 scanners (a difference of only 2%). Even though the predicted CDI result was pretty similar 
for all LiDAR datasets, the metrics numbers (between 2 and 9) and the correlation between the CDI 
and the predicted CDI (r= 0.31 to r=0.64) varied substantially. The LiDAR scanners that were the 
most accurate so far were the VUX-240 and the L1 LiDAR. These LiDAR scanners had a denser 
point cloud compared to the VUX-1LR point cloud (only 19.87 points per m2 against 227.91 and 
1508.93 points per m2 for the VUX-240 and L1 LiDAR, respectively), likely explaining their higher 
prediction accuracy. Our results suggest the accuracy of defoliation predictions will increase with 
point cloud density, which is to be expected. The L1 scanner had the highest point density, however 
its accuracy was lower than the VUX-240 scanner. This lower accuracy could be due to missing data 
(analysis done with 43 trees rather than 55 trees) and using a phone GPS rather than an RTK base 
for the L1 scanner. 
 
Considering the price involved in using the VUX-240 and VUX-1LR (LiDAR price, helicopter use and 
competent staff hiring), the L1 LiDAR presents a more affordable solution, being attached to a UAV. 
Using the L1 on a UAV is suitable for assessing small forest areas like the NZDFI trials, especially if 
the trials need to be surveyed several times a year. If larger spatial scales need to be monitored, 
e.g., 100 ha+, aeroplane or helicopter would likely become more efficient. 
 
Because the RMSE of both models (with and without the logit transformation) for every scanner had 
a similar enough RMSE for our analysis, both models could be used for the CDI prediction. For 
further analysis, the logit model only will be chosen. 

Limitations of the experiment 

During the LiDAR test experiment with the three different scanners, four main limitations appeared 
that could explain the weak accuracy prediction of the model. 
 

1. The range in observed CDI values at the Sefton site did not cover the whole CDI scale (Figure 
4). Maximum CDI values at the Martin site were at 50 CDI units, whereas in Marlborough, 
CDI values reached up to 80 (Figure 4). Hence, stronger correlations may have been 
identified if a greater range of CDI was available. A low infestation, coupled with the absence 
of EVB, more voracious than P. charybdis, was probably responsible for this low defoliation 
rate.  

2. Only 55 trees were assessed for this first LiDAR experiment. Most remote-sensing studies 
used at least a few hundred trees to obtain a more robust statistical analysis (Leidemer et 
al., 2022).  

3. The VUX-1LR defoliation comparison between September 2021 and March 2022 may have 
been masked by the high six months growth. Indeed, this period is when paropsines are the 
most active, but it is when the trees are growing the most too. In case of a low infestation, 
like in the Sefton site, the growth may have more impact than the paropsine defoliation.  

4. The CDI method is semi-quantitative, involving a visual assessment. Our use of CDI was the 
first step to evaluating the ability of LiDAR to detect changes in canopy health due to 
paropsine defoliation. Hence, future extensions of this work need to develop quantitative 
measures of defoliation, e.g., using a leaf area scanner of individual trees to compare with 
the remotely sensed data.  
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Figure 3: The different CDI frequency ranges of the Canterbury site (Sefton) used in this experiment and a Marlborough 
site. The Marlborough site is much more defoliated, with a CDI reaching up to 80 against a maximum of 50 for the 
Canterbury site.
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CONCLUSION 

Using LiDAR technology to assess paropsine defoliation shows promise. The LiDAR with the 
smallest prediction error was the VUX-240 scanner, followed by the L1 and finally the VUX-1LR 
(defoliation prediction was at ±19.1%, ±21% and ±23% from the observed CDI, respectively); This 
5% accuracy difference between the three scanners showed that all could be as good tool to predict 
paropsine defoliation. However, using a LiDAR scanner attached to a drone rather than a helicopter 
seems to be the best lower-cost option to collect data from small trials like the NZDFI ones. To 
improve the model prediction accuracy, further experiments need to conducted at sites with a 
broader defoliation range, e.g., Marlborough region, and to develop a quantitative method to assess 
defoliation on individual trees to compare with the remote sensing data.  
Finally, RBG data collected at the same time as the LiDAR data in March could be analysed and 
potentially combined with the LiDAR data to increase prediction accuracy (see introduction “Near 
Infrared imagery added to the RGB imagery”). 
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APPENDICES 

Table 1a: Multicollinearity above 0.95 between the existing metrics from the VUX-240 scanner from September 2021 (in 
total, 95 metrics).  

Metric 1 Metric 2 Corr. Metric 1 Metric 2 Corr. Metric 1 Metric 2 Corr. 

zmean zwimean 0.999 zq45 zq55 0.977 zq45 zq60 0.965 

zq65 zq70 0.997 zq75 zsqmean 0.977 zq20 zq30 0.965 

zq80 zq85 0.996 zmean zq50 0.977 zq60 zq75 0.964 

zmean zsqmean 0.996 zq70 zsqmean 0.976 zq40 zsqmean 0.964 

zq85 zq90 0.995 zmax zq95 0.976 zmax zq90 0.963 

zq40 zq45 0.995 zq15 zq20 0.975 zq55 zq70 0.962 

zq75 zq80 0.995 zq35 zwimean 0.975 zq65 zwimean 0.962 

zwimean zsqmean 0.995 zq80 zsqmean 0.974 zq50 zq65 0.962 

zq55 zq60 0.995 zq50 zsqmean 0.974 zq90 zsqmean 0.962 

zq70 zq75 0.994 zq65 zsqmean 0.974 zq30 zimean 0.962 

zq90 zq95 0.994 zmean zq35 0.974 zq35 zq50 0.961 

zq50 zq55 0.993 zq55 zq65 0.974 zmean zq65 0.96 

zq45 zq50 0.993 zq35 zimean 0.973 zmean zq30 0.96 

zq25 zq30 0.991 zq60 zsqmean 0.973 zq5 zq10 0.96 

zq35 zq40 0.991 zq10 zq15 0.972 zq40 zq55 0.96 

zq30 zq35 0.990 zq25 zq35 0.972 zq70 zwimean 0.96 

zq60 zq65 0.990 zq55 zwimean 0.971 zmean zq70 0.959 

zq20 zq25 0.987 zq40 zimean 0.971 zq30 zwimean 0.959 

zq80 zq90 0.986 zq45 zsqmean 0.971 zmean zq75 0.957 

zq75 zq85 0.985 zq75 zq90 0.971 zq75 zwimean 0.957 

zq85 zq95 0.984 zwimean zimean 0.971 zq30 zq45 0.956 

zq65 zq75 0.984 zq80 zq95 0.970 zq35 zsqmean 0.955 

zq50 zq60 0.983 zq55 zsqmean 0.970 zimean zsqmean 0.954 

zq45 zwimean 0.983 zq85 zsqmean 0.970 zq75 zq95 0.954 

zq35 zq45 0.981 zq60 zwimean 0.969 zmean zq80 0.953 

zq70 zq80 0.981 zmean zimean 0.969 zq95 zsqmean 0.952 

zq50 zwimean 0.980 zq30 zq40 0.968 zq15 zq25 0.952 

zq60 zq70 0.980 zmean zq55 0.968 zq80 zwimean 0.952 

zq40 zq50 0.980 zq65 zq80 0.967 zq50 zimean 0.951 

zmean zq45 0.980 zq45 zimean 0.966 zq50 zq70 0.951 

zq40 zwimean 0.980 zmean zq60 0.966 zmax zq85 0.95 

zmean zq40 0.978 zq70 zq85 0.966       
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Figure 1a: Matrix correlation of the 57 different metrics for the VUX-1LR scanner from September 2021. Many metrics 
were highly correlated (model with multicollinearity), with 95 metric correlations above 0.95. 

Table 2a: Multicollinearity above 0.95 between the existing metrics from the VUX-1LR scanner from September 2021 (in 
total, 33 metrics). 

Metric 1 Metric 2 Corr. Metric 1 Metric 2 Corr. Metric 1 Metric 2 Corr. 

ipcumzq10 ipcumzq30 1.000 ipcumzq50 pzabovezmean -0.989 ipcumzq50 ipcumzq70 0.970 

ipcumzq10 ipcumzq50 1.000 zq60 zq65 0.983 ipcumzq10 zentropy -0.970 

ipcumzq30 ipcumzq50 1.000 ipcumzq70 zentropy -0.981 ipcumzq30 zentropy -0.970 

p1th p2th -1.000 pzabove2 zimean 0.973 ipcumzq50 zentropy -0.970 

zmean zwimean 1.000 zmean pzabove2 0.973 zq55 zq65 0.969 

zmean zimean 1.000 pzabovezmean pzabove2 0.973 zentropy pzabovezmean 0.969 

zwimean zimean 1.000 zimean zsqmean 0.973 zwimean zsqmean 0.967 

zq55 zq60 0.998 pzabove2 zwimean 0.973 ipcumzq70 pzabovezmean -0.963 

zsd zsqmean 0.993 zmean zsqmean 0.971 ipcumzq10 pzabove2 -0.956 

ipcumzq10 pzabovezmean -0.989 ipcumzq10 ipcumzq70 0.970 ipcumzq30 pzabove2 -0.956 

ipcumzq30 pzabovezmean -0.989 ipcumzq30 ipcumzq70 0.970 ipcumzq50 pzabove2 -0.956 
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Figure 2a: Matrix correlation of the 57 different metrics for the VUX-1LR scanner from March 2022. Many metrics were 
highly correlated (model with multicollinearity), with 33 metric correlations above 0.95. 

Table 3a: Multicollinearity above 0.95 between the existing metrics from the VUX-1LR scanner from March 2022 (in total, 

33 metrics). 

Metric 1 Metric 2 Corr. Metric 1 Metric 2 Corr. Metric 1 Metric 2 Corr. 

ipcumzq10 ipcumzq30 1.000 ipcumzq50 pzabovezmean -0.989 ipcumzq50 ipcumzq70 0.970 

ipcumzq10 ipcumzq50 1.000 zq60 zq65 0.983 ipcumzq10 zentropy -0.970 

ipcumzq30 ipcumzq50 1.000 ipcumzq70 zentropy -0.981 ipcumzq30 zentropy -0.970 

p1th p2th -1.000 pzabove2 zimean 0.973 ipcumzq50 zentropy -0.970 

zmean zwimean 1.000 zmean pzabove2 0.973 zq55 zq65 0.969 

zmean zimean 1.000 pzabovezmean pzabove2 0.973 zentropy pzabovezmean 0.969 

zwimean zimean 1.000 zimean zsqmean 0.973 zwimean zsqmean 0.967 

zq55 zq60 0.998 pzabove2 zwimean 0.973 ipcumzq70 pzabovezmean -0.963 

zsd zsqmean 0.993 zmean zsqmean 0.971 ipcumzq10 pzabove2 -0.956 

ipcumzq10 pzabovezmean -0.989 ipcumzq10 ipcumzq70 0.970 ipcumzq30 pzabove2 -0.956 

ipcumzq30 pzabovezmean -0.989 ipcumzq30 ipcumzq70 0.970 ipcumzq50 pzabove2 -0.956 
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Figure 3a: matrix correlation of the 57 different metrics for the L1 scanner from March 2022. Many metrics were highly 
correlated (model with multicollinearity), with 54 metric correlations above 0.95. 
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Table 4a: Multicollinearity above 0.95 between the existing metrics from the L1 scanner from March 2022 (in total, 54 

metrics). 

Metric 1 Metric 2 Corr. Metric 1 Metric 2 Corr. Metric 1 Metric 2 Corr. 

zq70 zq75 0.998 zq60 zq75 0.982 zq65 zq85 0.968 

zq60 zq65 0.998 zq60 zsqmean 0.981 zq75 zsqmean 0.967 

zq75 zq80 0.997 zq55 zsqmean 0.981 zq80 zq95 0.966 

zq90 zq95 0.997 zkurt zpcum2 0.980 zmean zq45 0.964 

zq65 zq70 0.996 zq70 zq85 0.979 zq55 zq75 0.963 

zq55 zq60 0.993 zq65 zsqmean 0.977 zq75 zq90 0.963 

zq85 zq90 0.993 zmean zsqmean 0.977 zpcum1 zpcum2 0.961 

zq70 zq80 0.993 zskew zpcum2 0.976 zq80 zsqmean 0.961 

zq50 zq55 0.992 zq50 zsqmean 0.976 zmean zq50 0.960 

zq65 zq75 0.991 zq55 zq70 0.974 zq50 zq65 0.960 

zq80 zq85 0.991 zq50 zq60 0.974 zq45 zsqmean 0.960 

zq60 zq70 0.990 zq70 zsqmean 0.973 zq75 zq95 0.959 

zq45 zq50 0.990 zq60 zq80 0.972 zq70 zq90 0.957 

p1th p2th -0.990 ipcumzq10 ipcumzq30 0.971 zq85 zsqmean 0.957 

zq85 zq95 0.989 zskew zkurt 0.971 zq60 zq85 0.957 

zq55 zq65 0.985 ipcumzq50 ipcumzq70 0.970 zmax zq95 0.954 

zq75 zq85 0.985 zq80 zq90 0.970 zq35 zq40 0.954 

zq65 zq80 0.983 zq45 zq55 0.969 zq70 zq95 0.953 

 


